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Abstract

It has recently been known that local high-gradient regions of an advected scalar, such as temperature or mass

contaminant, in a turbulent state of fluid form thin sheets, randomly oriented and moving around with turbulent

motion. Here is presented a joint multifractal model for velocity and scalar dissipations in isotropic turbulence which

can predict the statistical distributions of the worms, vorticity-concentrated regions, as well as the above-described

scalar-gradient sheets. This model allows us to derive turbulent diffusion coefficient in isotropic turbulence scaled by

Reynolds number and Prandtl number, which predominates far over molecular diffusion coefficient.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the most important problems in turbulence

theory is the process of turbulent mixing. This problem

affects many industrial and ecological topics, in which

we desire to know the heat or mass diffusion rate and

sometimes the chemical reaction rate during turbulence.

In order to discuss this process in detail, however, we

need to know the expectedly universal, statistical struc-

ture of an advected scalar distributed in a turbulent

fluid. Although many theoretical and experimental

works on the structure functions of a passive scalar as

well as the probability density functions (PDF) of its

increment and gradient in a turbulent fluid have been

published so far, the instantaneous morphologic feature

of an advected scalar has not been researched very well.

A reliable theory for explaining it is still lacking. Here is

presented a bold but simple phenomenological method

for investigating the statistical nature of the morpho-

logic feature to be seen in isotropic turbulence on the

basis of a joint scale-similar multifractal theory of dis-

sipations of velocity and a passive scalar.
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Now that we know that many worms, recognized as

locally vorticity-concentrated slender regions in the flow,

appear in isotropic turbulence in a statistically universal

way, we may expect some kind of structure of a scalar

advected in the isotropically turbulent flow to appear as

well. According to the recent direct numerical simula-

tion (DNS) of three-dimensional (3D) decaying isotropic

turbulence with a passive scalar for Taylor-scale Rey-

nolds number Rk ¼ 160 and Prandtl number Pr ¼ 1 [1],

we have recognized that many sheet-like regions with

locally high values of scalar-gradient move around

randomly in fully-developed turbulence. The thickness

of the sheet is of the order-of-magnitude of Kolmogorov

length g ð¼ ðm3=eÞ1=4; m: kinematic viscosity of fluid; e:
globally averaged energy dissipation rate per unit mass),

while the width can reach integral scale L, at most, but

the core part of the sheet which is really flat is considered

as Taylor-scale wide on the average. The same feature

was also evidenced by another DNS of forced isotropic

turbulence with a passive scalar with a fixed mean scalar

gradient for Rk ¼ 88 and Pr ¼ 0:7 [2]. The previous DNS

for Rk ¼ 60 and 45 by Ruetsch and Maxey [3,4], who

also treated a forced isotropic turblence with a passive

scalar with a fixed mean scalar gradient, are quite con-

sistent with the above-described observations. In par-

ticular, their result suggests that the sheet lies on a local
ed.
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Nomenclature

C constant of integration of Eq. (2); equal to

S=d
d thickness of a scalar-gradient sheet

L macroscale length or integral scale

ms normalized thickness; d=gs

NðdÞ number of sheets with thickness d within the

volume of L3

NT total number of sheets in a macroscale box

of volume L3

Nu Nusselt number

Pr Prandtl number; m=j
P ( ) PDF of the argument in the parenthesis

pðy; z; r=lÞ PDF of y and z for scale ratio r=l
Re macroscale Reynolds number

Rk Taylor-scale Reynolds number

r0 smallest scale over which we can consider

the local character of turbulence, fully con-

taining the inertial range

S scalar gap across a scalar-gradient sheet

T passive scalar

Tr total transfer rate of passive scalar in a

macroscale cube

t time variable

uj jth component of velocity vector

hu2i square-average of longitudinal velocity

fluctuation

xj jth component of displacement vector

y multiplier of energy dissipation; er=el

z multiplier of scalar dissipation; vr=vl

Greek symbols

a strain in the two-dimensional stagnant

flow

d boundary layer thickness at distance x from

the leading edge

e energy dissipation averaged over a macro-

scale cube; equal to eL
er energy dissipation averaged over a domain

of scale r
g Kolmogorov scale; ðm3=eÞ1=4
gs ðj3=eÞ1=4
g0
s local value of gs in a domain of scale

r0; ðj3=er0 Þ1=4
j molecular diffusion coefficient of the passive

scalar

jT turbulent diffusion coefficient

k Taylor-microscale

k0 local Taylor-microscale in a domain of scale

r0

l second-order intermittency exponent

m kinetic viscosity

R normalized scalar gap; S=ðj1=4v1=2
L =e1=4L Þ

vd scalar dissipation at the middle of a scalar-

gradient sheet

vr scalar dissipation averaged over a domain of

scale r
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stagnation line with a persistent uniform strain, under

the influence of some vortical structures in turbulence.

We have an exact steady solution of the advected

scalar-gradient equation in the two-dimensional stag-

nant flow with a uniform strain, as is stated in the next

section. This solution may be considered to give the

approximative local structure of the above-described

scalar-gradient sheet. This is similar to the situation

where a Burgers vortex may approximate the vorticity

field around a worm. Thus we can think of a random

collection of many scalar-gradient sheets, each simulated

by this steady solution, which are distributed in a tur-

bulent fluid in accord with some universal statistics; just

as we considered a collection of many Burgers vortices

to approximate worms in real turbulence [5].

In the previous treatment of the statistics of worms in

isotropic turbulence [5], we utilized the 3D binomial

Cantor set model for energy dissipation measure [6] as a

statistical device to link the instantaneous spatial ar-

rangement of worms to the geometry of a universal

scale-similar (dissipation) measure. Fortunately, we

have developed a reasonable extension of this model to

the case of turbulence with a passive scalar [7], what may
be called the tetranomial Cantor set model for joint

multifractal measure for energy and scalar dissipations.

This can give rise to the anomalous scaling exponents of

scalar structure functions [7], as well as to the PDF of

scalar increment across various distances [8], both in

excellent agreement with experiment in a way that this

model is much better than the joint lognormal model

proposed before. This fact suggests that there must be a

self-similar structure of scalar dissipation measure as

well. Therefore, it is natural and inevitable, at the pre-

sent stage, to take this model as a base for considering

the instantaneous spatial distribution of scalar-gradient

sheets. Then we try to construct a phenomenological,

statistical theory of the sheets on this basis, relying on

another bold postulate which is finally stated in Section

3. The point of interest here is a possible way of char-

acterizing statistical configuration of a collection of

scalar-gradient sheets by a particular scale-similar mea-

sure (consistent with the DNS and experimental obser-

vations) and by the exact solution of a single sheet

structure (described in next section).

In Section 4 the total characteristics of sheets in a

macroscale cube are discussed to predict the turbulent



I. Hosokawa / International Journal of Heat and Mass Transfer 47 (2003) 959–968 961
diffusivity in isotropic turbulence, which allows us to

discuss the Nusselt number across a macroscale (nearly

isotropic) turbulence box. We shall estimate the PDF of

thickness, width of a sheet and that of scalar gap across

a sheet in Appendix A and B. Our estimation may be too

simple and still crude, but it is expected to help our

systematic understanding of the statistical structure of

scalar-gradient sheets in turbulence, at least until a more

rigorous theory is established from the first principle on

this matter.
2. Exact steady solution for a scalar-gradient sheet

As is well known, an advected scalar T is governed by

oT=ot þ ujoT=oxj ¼ jo2T=oxj oxj; ð1Þ

where t is time variable, xj and uj represent the jth
components of the vectors of position and velocity of the

fluid flow, respectively, and j is the diffusion coefficient

of the scalar in fluid. The repeated subscripts imply the

summation over them. Let us assume that the scalar

depends only on x1 and is in the two-dimensional stag-

nant flow with a uniform strain for which we have

u1 ¼ �ax1, u2 ¼ ax2 and u3 ¼ 0. This stagnant flow is an

exact solution of the Navier–Stokes equation. Then Eq.

(1) becomes

ax1oT=ox1 þ jo2T=ox21 ¼ 0: ð2Þ

This allows oT=ox1 to be solved exactly as

oT=ox1 ¼ C exp½�ax21=ð2jÞ
; ð3Þ

where C is a constant. Hence we have a solution for T as

T ðx1Þ ¼ C
Z x1

�1
exp

�
� ax2

2j

�
dx; ð4Þ

assuming that T vanishes as x1 tends to �1. If we define

the total scalar gap across the sheet as S ¼ T ð1Þ�
T ð�1Þ, then C is given as

C ¼ S=ð2pj=aÞ1=2: ð5Þ

In view of the equation

½T ð1Þ � T ð�1Þ
=ðoT=ox1Þmax ¼ S=C ¼ ð2pj=aÞ1=2;
ð6Þ

the thickness of the sheet may be best defined as

d � ð2pj=aÞ1=2.
It is notable that, by differentiating Eq. (2) with re-

spect to x1, we obtain the equation for the one-dimen-

sional (1D) Burgers vorticity field in the same stagnant

flow [9] only if oT=ox1 is considered as the vorticity in

the x2 direction. Thus, our exact solution for the scalar-

gradient sheet is mathematically equivalent to that for

the 1D Burgers vorticity layer.
3. Working postulates

Here we explain some necessary postulates for con-

sidering the statistics of the sheets in turbulent fluid.

Postulate 1. The multifractal structure of scalar dissi-

pation is derived from the tetranomial Cantor set model

as a joint multifractal measure for both energy and

scalar dissipations.

Meneveau et al. [10] were the first to describe the

distribution of scalar dissipation in terms of a joint

multifractal measure for both energy and scalar dissi-

pations, even though it was developed in a 1D cut of

space in order to compare with their 1D experimental

data series. This idea is reasonable, since the scalar is

advected by the turbulent velocity field so that a com-

plicated spatial arrangement of the scalar must be

somehow linked to that of the latter, which is charac-

terized by the multifractal structure of energy dissipa-

tion. The tetranomial Cantor set model developed in 3D

space by the present author [7,8] improved the idea in a

more generalized and satisfactory way in view of com-

parison of the ever (but slowly) increasing scaling indices

of scalar structure functions with experiment. No more

powerful model has been contrived so far. There has

been a discussion on the tendency of the scaling indices

that they may saturate to a certain constant asymptoti-

cally [11], but it can not be considered as universal or

realistic because the base of the discussion is a DNS of

two-dimensional turbulence; even though this paper [11]

clarified the importance of scalar-gradient sheets in

turbulence by the name of fronts or cliffs.

In this model [7,8], both energy and scalar dissipa-

tions serve as a joint multifractal measure in 3D space in

the inertial-convective scaling range, that is, the range

from macroscale L down to the larger of Kolmogorov

scale g and its counterpart for the advected scalar, gS

(¼ ðj3=eÞ1=4). If L > l > r > Maxðg; gSÞ and we write

energy and scalar dissipations locally averaged over a

domain of scale r as er (therefore e ¼ eL) and vr, re-

spectively, then the stochastic variable y ¼ er=el and

z ¼ vr=vl, where the domain of scale r in question should

be involved in the domain of scale l, distribute them-

selves spatially with the joint PDF:

pðy; z; r=lÞ ¼
X
k

XCkK
kð1=2�KÞX�k

X
l;m

kClX�kCm

 dðy � BlþmCX�l�mÞdðz�DlEk�lF mGX�k�mÞ:
ð7Þ

The parameters B, C and X are fixed by the binomial

Cantor set for energy dissipation measure in turbulence,

since
R
pdz should reduce to the PDF of y for turbulence

without a passive scalar (that is 2�X
P

k XCkdðy � BkCX�kÞ
[5]). Therefore, X ¼ � lnðr=lÞ= lnA, A ¼ 21=3 and B,
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C ¼ 1� ð2l=3 � 1Þ1=2 (that is, B ¼ 1:2175 and C ¼ 0:7825
when we take the second-order intermittency exponent

l ¼ 0:20, a currently accepted value). The other para-

meters newly appear, reflecting a tetranomial Cantor set

structure of scalar dissipation measure. The recom-

mended values [7] for them in view of comparison with

experiment are K ¼ 0:156, D ¼ 1:067, E ¼ 0:358, F ¼
1:20 and G ¼ 1:06.

Particularly for r=l ¼ 1=21=3, we have

pðy; z; 2�1=3Þ ¼ K½dðy � BÞdðz� DÞ þ dðy � CÞdðz� EÞ


þ ð1=2� KÞ½dðy � BÞdðz� F Þ

þ dðy � CÞdðz� GÞ
: ð8Þ

Although the present pðy; z; r=lÞ is relevant to scale ratio

r=l of domains in 3D space, the PDF itself would be

applicable extensively in other dimensional spaces.

However, it should be taken into account that if this

PDF is applied in 1D space, the scale ratio must be

changed to ðr=lÞ1=3. Thus, the present PDF for scale

ratio¼ 1/21=3 really means the PDF at a half splitting in

scale occurring only in 1D space. This implies that in a

1D half-splitting process in cascade there are four pos-

sible discrete values for z, stochastic measure ratio

v1=2ð1=3Þ
=v1, while there are two for y.

Generally speaking, it is an idealization to assume a

discrete probability for values of y and z such as in Eqs.

(7) and (8). Real phenomena would naturally be de-

scribed by a continuous probability. However, some-

times they may reveal their essential characters by an

extreme simplification of description, only if the results

deduced from it well approximate various experimental

evidences of the phenomena. Then it offers a really

useful method for analyzing a complicated physical

process in a relatively simple way. The present joint

Cantor set structure model for energy and scalar dissi-

pations must be considered just as such.

Postulate 2. The scalar field across a scalar-gradient

sheet in turbulence can be approximately considered as

1D and represented by the exact solution (4) with the

same scalar gap.

Even though real gradient sheets in turbulence are

never 1D, having a limited width and curvature, this

postulate makes it quite easy to handle all the calcula-

tion.

We assume that the thickness of the sheet is ms times

the local gs value in a domain of scale r0, that is

g0
s ¼ ðj3=e0rÞ

1=4 ¼ ðj3=eLÞ1=4y�1=4, where y ¼ e0r=eL; r0 is

the smallest scale over which we can consider the local

character of turbulence and which should involve the

whole inertial range of scale. As a result, we have

d=g ¼ msy�1=4: ð9Þ
s
In this paper we will take r0 ¼ L=8 in the same thought

as we did for the statistics of worms in turbulence [5]

previously, and ms ¼ 4, which is a plausible value to our

knowledge in all the DNS performed on the thickness so

far [1–4]. The choice of ms ¼ 4 has been recently sup-

ported by experiment [12], which states that the mean

thickness of sheets ffi 13g follows a R�3=2
k scaling. While

it is obvious that g has a R�3=2
k scaling [13], the mean

width becomes about 3.4 gs, if the Pr based on m ¼ 2:8
10�4 cm2/s and j ¼ 17 10�4 cm2/s in the paper is taken

into consideration (that is, if divided by ðj=mÞ3=4). Here if

the average is taken with the PDF of y, the mean of d in

(9) is very close to that value. This can be well under-

stood from the Fig. 2(a) in Appendix A, which shows the

PDF of d=gs.

We can calculate vd at the middle of the sheet, using

Eq. (3), as

vd ¼ j
Z d=2

�d=2
ðoT=ox1Þ2dx1=d

¼ jC2ðpj=aÞ1=2Erf ½ða=jÞ1=2d=2
=d: ð10Þ

Taking only the first term of the formula: Erf ½z
 ¼
2ffiffi
p

p e�z2ðzþ 2
3
z3 þ . . .Þ since d is a small value, we have

vd ¼ jC2e�p=2 ¼ jS2e�p=2=d2;

or

S ¼ ðep=4d=j1=2Þv1=2
d : ð11Þ
Postulate 3. The spatial distribution of scalar dissipa-

tion near a scalar-gradient sheet must be locally almost

1D.

This is consistent with the exact solution explained in

the preceding section and compares well with the nu-

merically observed sheet structure of concentrated scalar

dissipation regions. But this Postulate puts a strong re-

striction on the application of Postulate 1 to a domain of

small scale, at least, less than Taylor-scale. For such

scales, the half-splitting in the measure breakdown

process of Postulate 1 should be interpreted one-

dimensionally, that is, as the splitting of a plate into two

thinner half plates.

Thus, we take a simple idealization that a Taylor-

scale (¼ k) wide cube splits into k=d plates each d thick

and k wide, after such a half-splitting process is repeated

n times; n ¼ log2ðk=dÞ. Only a plate with the maximum

measure ratio z ¼ F (in Eq. (8)) among a pair of two

plates which have occurred in the final breakdown

process can form a scalar-gradient sheet, if the measure

there makes a local maximum. In order for the measure

to be locally maximum, the measure ratios in the one

step preceding to final splitting are relevant. We have
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three cases to be considered. If the measure ratio is F in

this splitting, too, the measure at the plate in question is

always a local maximum; the probability that such a

case occurs is ð1=2� KÞ2 as is obvious from Eq. (8). If it

is D, the plate in question has a locally maximum mea-

sure only unless the measure ratio of the other plate in

that splitting is F and the measure ratio arising from the

splitting of this plate is D or F ; the probability for this

case isKð1=2� KÞ½1� ð1=2� KÞðK þ 1=2� KÞ
. Finally,
if it is G, the plate in question has a local maximum

measure if the measure ratio of the other plate in that

splitting is F with E as the measure ratio arising from the

splitting of this plate, if the same is D with D, G or E and

if the same is E with F ;D;G or E; the probability for this

case is ð1=2� KÞ2fð1=2� KÞKþ K½K þ ð1=2� KÞ þ K

þKg: To sum up all these probabilities, we have

ð1=2� KÞð1=2þ 3K=4� 3K2=2Þ as the probability that

one of the plates in the final splitting is a sheet with a

local maximum of scalar dissipation. That is 0.200 for

the value of K ¼ 0:156. It means that 20.0% of the k=d
plates can be the sheets.

This idealization may be an extreme modeling. In

fact, such an orderly alignment of scalar-gradient sheets

in a Taylor-scale wide cube is hardly ever observed ex-

actly. What we can expect to see is an entanglement of

more or less deformed sheets, keeping the same topology

as the straight parallel plates assumed above in the cube.

This expectation looks reasonable, however, since our

multifractal assumption in Postulate 1 already desig-

nates a possible spatial distribution of scalar dissipation

over the entire inertial-convective range of scale, and

since its reality was evidenced by the scaling of scalar

structure functions [7] and the PDF of scalar increment

for various scales [8]. Therefore, even the PDF of scalar

dissipation in a 1D structure of fine scale cannot be free

from the form given by Eq. (7), and is considered to be

treated by the same PDF (but with the modified scale

ratio noted in Postulate 1).

Thus, we have the expression of scalar dissipation in

a sheet which is the plate with z ¼ F in the final break-

down process,
Fig. 1. Schematic sketch of a sheet (black region) with local

maximum of vd (¼ e.g. FF � � � F vk0Þ in a cube of side length k0.

The corresponding profile of the passive scalar in the x1 axis is
shown on the right-hand side.
vd ¼ F ðvkð1=2Þðn�1Þ=3=vkÞðvk=vr0 Þðvr0=vLÞvL; ð12Þ

together with Eq. (8) and the remark there (on appli-

cation of the PDF in another space dimension) in mind.

We shall introduce a local Taylor-scale k0 in place of k in

the later sections, like a local gs scale, which depends on

y. A schematic sketch of the sheet structure based on

these postulates is given in Fig. 1. Of course, there may

be more than one sheet in a cube of side length k0.
4. Number, area and volume of scalar-gradient sheets

Now let us calculate the number of sheets with the

thickness d within the volume of L3;NðdÞ. Postulate 3

gives directly

NðdÞ ¼ 0:200ðk0=dÞðL3=k03Þ; ð13Þ

where k0 is the local Taylor-scale, which is related to er0
by k02er0 ¼ k2eLð¼ 15mhu2i; hu2i: square-average of longi-

tudinal velocity fluctuation [13]). After taking into ac-

count Eq. (9), g=L ffi 153=4R�3=2
k and k=L ffi 15R�1

k [13],

and putting y ¼ er0=eL, Eq. (13) can be rewritten as

NðdÞ ¼ 0:200=ð1511=4msÞy5=4R7=2
k Pr3=4; ð14Þ

where Pr ¼ m=j. We should here note from Eq. (9)

y ¼ m4
s ðd=gsÞ

�4ð¼ m4
s ðd=gÞ

�4Pr�3Þ: ð15Þ

Eq. (14) shows that NðdÞ, which is stochastic in y, and
the total number of sheets, which is the average of NðdÞ,
are in proportion to R7=2

k and Pr3=4, since the scale

r0ð¼ L=8Þ to govern the PDF of y is considered to be

independent of Rk and Pr, as assumed in Postulate 2.

The total number of sheets in a macroscale box of

volume L3 is given as the expectation value of Eq. (14):

NT ¼ 0:200=ð1511=4msÞR7=2
k Pr3=4

Z Z
y5=4pðy; z; r0=LÞdy dz:

ð16Þ

Since
R R

y5=4 pðy;z;r0=LÞdydz¼ ½ðB5=4þC5=4Þ=2
9 ¼ 1:069
(with r0=L ¼ 1=8) we have 1288 sheets for Rk ¼ 150 and

Pr ¼ 1. The standard deviation is calculated as 1.002NT

from the value of
R R

y5=2pðy; z; r0=LÞdy dz ¼ ½ðB5=2 þ
C5=2Þ=2
9 ¼ 2:147.

The total area of sheets is very important for mixing

process as well as reaction process of the scalar. Since a

sheet is k0 wide, it is calculated as the expectation value

of k02NðdÞ:

0:200L2=ð153=4msÞR3=2
k Pr3=4

Z Z
y1=4pðy; z; r0=LÞdy dz

¼ 0:200L2=ð153=4msÞR3=2
k Pr3=4½ðB1=4 þ C1=4Þ=2
9; ð17Þ
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which is in proportion to R3=2
k and Pr3=4. For example, all

sheets cover an area of 11.6 times L2 in case of Rk ¼ 150

and Pr ¼ 1. Here is a secret of the great turbulence

power for scalar transport phenomenon.

If we express d from Eq. (15), we have

d ¼ msPr�3=4y�1=4g ¼ 153=4msR
�3=2
k Pr�3=4Ly�1=4: ð18Þ

This gives rise to

dk02NðdÞ ¼ 0:200L3; ð19Þ

which is invariant to y. Hence we may understand that

the volume of sheets is not stochastic and always occu-

pies 20.0% of the total volume of fluid, irrespective of Rk

and Pr. It is apparent that this ratio stems directly from

Postulate 3.
5. Scalar transfer rate in turbulence and Nusselt number

The total scalar transfer Tr in a macroscale volume

in turbulence per unit time may be estimated as the

expectation value of

ðjS=dÞk02NðdÞ ¼ 0:200ep=4=ð153=4msÞ

 ðjvLF Þ
1=2R3=2

k Pr3=4L2ðz00z0zÞ1=2y1=4;
ð20Þ

that is obtained by using Eqs. (11), (12) and (17). The

stochastic part, ðz00z0zÞ1=2y1=4, has only to be averaged

with a combined PDF: pðy00; z00; 1=2ðn�1Þ=3Þpðy0; z0; 120=
ðRky1=2ÞÞpðy; z; 1=8Þ. This calculation is analytically pos-

sible if Eq. (7) is used. In fact, the first double integralR R
z001=2pdy00dz00 reduces, by taking X ¼ � lnð1=2ðn�1Þ=3Þ=

lnA ¼ n� 1, to

X
k

XCkK
kð1=2� KÞX�k


X
l;m

kClX�kCmD1=2Eðk�lÞ=2F m=2GðX�k�mÞ=2

¼ ½KðD1=2 þ E1=2Þ þ ð1=2� KÞðF 1=2 þ G1=2Þ
X

¼ ½ð151=4=msÞR1=2
k Pr3=4y�1=4=2
ð4c�1Þ=5

; ð21Þ

where we have put ð4c � 1Þ=5 ¼ log2½KðD1=2 þ E1=2Þþ
ð1=2� KÞðF 1=2 þ G1=2Þ
. The second double integralR R

z01=2pdy0dz0 is carried out in the same way, by taking

X ¼ � ln½120=ðRky1=2Þ
, as

½KðD1=2 þ E1=2Þ þ ð1=2� KÞðF 1=2 þ G1=2Þ
X

¼ ½120=ðRky1=2Þ
�3ð4c�1Þ=5
: ð22Þ

The third double integral with respect to y and z con-

tains the stochastic factor ycz1=2, to which Eqs. (21) and

(22) have contributed, and that is integrated as
Z Z
ycz1=2pðy; z;1=8Þdydz

¼ ½KðBcD1=2 þCcE1=2Þ þ ð1=2�KÞðBcF 1=2 þCcG1=2Þ
9:
ð23Þ

The prefactor remaining from Eqs. (21) and (22)

amounts to

R ¼ ½151=4=ð2msÞ
ð4c�1Þ=5
120�3ð4c�1Þ=5R7ð4c�1Þ=10

k Pr3ð4c�1Þ=20:

ð24Þ

Thus, the product of Eqs. (23) and (24) gives the ex-

pectation value of the stochastic part wanted.

In our multifractal model explained in Postulate 1,

we have ð4c � 1Þ=5 ¼ �0:02089, and then c ¼ 0:2239, so
that the right-hand side of Eq. (23) becomes 0.8803.

Combining this, R and the other part of Eq. (20) alto-

gether (with ms ¼ 4), we have the final formula:

Tr ¼ 0:0216ðjvLÞ
1=2R1:427

k Pr0:734L2: ð25Þ

Thus, apart from the factor ðjvLÞ
1=2

, the efficiency of

turbulent mixing may be said to increase almost in

proportion to R3=2
k Pr3=4; even though the actual power

exponents are slightly smaller, affected by the factor R in

Eq. (24).

The factor ðjvLÞ
1=2

may be reformed, using the con-

cept of scale-similar scalar cascade in the inertial-con-

vective range of scale that implies

vL ¼ hðT � hT iÞ2ihu2i1=2=L ð26Þ

to be ðPrReÞ1=2jhðT � hT iÞ2i1=2=L where Re ¼ hu2i1=2L=m.
If we rewrite (25) using this and the relation:

Rk ¼ ð15ReÞ1=2, we have

Tr ¼ 0:00558R2:427
k Pr1:234L2jhðT � hT iÞ2i1=2=L ð27Þ

or

Tr ¼ 0:149Re1:214Pr1:234L2jhðT � hT iÞ2i1=2=L: ð28Þ

Since hðT � hT iÞ2i1=2 is considered as a representative

value of macroscale variation of scalar T , the factor

hðT � hT iÞ2i1=2=L in (27) should be interpreted as com-

parable with a scalar gradient really observable over

scale L in this turbulence. Thus, the right-hand side of

Eq. (27) is the same as the scalar transfer rate, obtained

when we have a scalar gradient hðT � hT iÞ2i1=2=L normal

to the cross-section of area L2, in a fluid with the scalar

diffusion coefficient:

jT ¼ ð0:00558R2:427
k Pr1:234or 0:149Re1:214Pr1:234Þtimes j:

ð29Þ

This new coefficient jT implies an enormous gain in

diffusivity in comparison with j (and may be called
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turbulent diffusion coefficient), which would be usable

for sketching the outer-macroscale process of turbulent

diffusion under the assumption of fully-developed iso-

tropic turbulence existing in inner scales.This is the first

theoretical prediction of the turbulent diffusion coeffi-

cient in isotropic turbulence. It is an important target

which has long been awaited to be achieved from an

engineering practical point of view, since the mathe-

matical concept of multifractal applied to turbulence

was advocated many years ago [1,6,7,10,14–16]. The

scaling of jT is, after all, close to R5=2
k Pr5=4 or Re5=4Pr5=4,

which necessarily comes from our multifractal sheet

model of scalar gradient and the traditional concept of

energy and scalar cascades in the inertial-convective

range of scale in high-Reynolds number turbulence.

The quantity jT=j ¼ 0:149Re1:214Pr1:234 obtained from

(29) may be understood to be the Nusselt number Nu of

scalar transfer over a macroscale L from a plate in con-

tact with a homogeneous isotropic turbulent fluid, only if

the turbulence is kept isotropic. However, the presence of

mean scalar gradient, in itself, necessarily causes a sta-

tistical anisotropy even if slightly. Then, it may be hard

to predict very exactly from our theory real Nusselt

numbers in various anisotropic turbulent flows contain-

ing an advected scalar. Let us compare our prediction

with the experiment of Jayesh andWarhaft [17] who used

a grid-generated decaying homogeneous turbulence with

a mean vertical temperature gradient imposed. Their

formula is Nu ¼ 0:73Re0:88 with Pr ¼ 0:7 for the range of

60 < Re < 1100. This gives Nu ¼ 76 and 132 for

Re ¼ 197 and 369, respectively, while we have jT =j ¼ 59

and 125 for the same Re and Pr. There is an appreciable

difference between the corresponding values in both

cases, but it seem to be acceptable, if both a possible

experimental error and an extreme idealism inherent to

our mathematical theory are taken into account.

Our theory, however, would be more relevant to a

higher-Re turbulence with a very wide inertial-convective

range involving deep cascades of energy and scalar. The

higher exponent of Re in jT=j seems to indicate this

feature. The ultimate value of the exponent in turbulent

scalar advection is still unfixed. It may be added, how-

ever, that the exponent of Nusselt number would reach 1

in a turbulent Rayleigh–Benard convection for (very

high Rayleigh numbers and so) high Reynolds numbers;

that is, Nu � RePr, according to the recent work of

Lohse and Toschi [18]. (Note that thermally-forced

turbulence in the Rayleigh–Benard flow is considered to

be nearly isotropic except very near the top and bottom

surfaces for very high Rayleigh numbers.) It is to be

further noted that there is a constraint for two para-

meters Rk and Pr to guarantee the validity of our theory

such that R1=2
k Pr3=4 > 2ms=15

1=4, as described in Appen-

dix B; for Pr small, Rk must be large enough.

Thus, these comparisons would signify that our ide-

alistic view of advected scalar turbulence on the multi-
fractal basis has a substantial reality or practicability.

However, it may be the most direct method of identi-

fying jT to observe, by any means, how rapidly a con-

taminant from a point source expands through an

isotropically turbulent fluid; since the contaminant must

diffuse statistically over a macroscale length, obeying a

parabolic differential equation with jT as diffusion co-

efficient. This is free from an imposed mean scalar gra-

dient which affects the statistical isotropy of turbulence

more or less.
6. Conclusion

It is an essential property of an advected scalar that

its gradient forms a huge number of sheets in high

Reynolds number turbulence, and this provides a great

advantage for scalar mixing or reaction process. Based

on the three Postulates, we have phenomenologically

predicted the statistical structure of these sheets dis-

tributed in a turbulent fluid. In other words, the tetra-

nomial Cantor set model for isotropic turbulence with

an advected scalar, that implies a special joint scale-

similarity or multifractality (in the inertial-convective

range) of cross dissipation measure in y  z space, to-

gether with the exact solution of the advected scalar

equation representing the sheet, has revealed itself as a

useful tool in dealing with the nature of advected scalar

turbulence, at least, qualitatively. In particular, an ex-

plicit formula of turbulent diffusivity in fully-developed

isotropic turbulence has been derived on this basis, and

the macroscale scalar transfer predicted from this has

been fairly compared with the heat transfer across a

grid-generated homogeneous turbulence in the presence

of mean vertical temperature gradient [17].
Appendix A. PDFS of the thickness and width of sheets

We know from Eq. (15) that the thickness d of a sheet

is stochastic according to the PDF of y. Then we have

the PDF of d in the normalized form as

Pðd=gsÞ ¼ 4m4
s ðd=gsÞ

�5y5=4


Z

pðy; z; r0=LÞdz
Z Z�

y5=4pðy; z; r0=LÞdydz;

ðA:1Þ

together with Eq. (15). It is remarkable that the PDF is

independent of Rk and Pr, so long as d is normalized by

gs.
R
pðy; z; r=lÞdz is nothing but the binomial Cantor set

model for energy dissipation measure, as is noted in

Postulate 1. The pðy; z; r=lÞ in our model is basically a

multinomial delta function in y  z space, which implies

a probability on a discrete set in the space. And so isR
pðy; z; r=lÞdz in y space. However, we can relax this

limited situation for the case of the binomial Cantor set
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model to let the PDF imply a probability on a contin-

uous set in y space by taking the step-function approx-

imation, which was explained in the previous paper [5],

to simulate
R
pðy; z; r=lÞdz. The Pðd=gsÞ obtained using

this approximation to
R
pðy; z; r0=LÞdz, is shown in Fig.

2(a). (ms ¼ 4; r0=L ¼ 1=8, and l ¼ 0:2 are the values ac-

cording to the postulates.) The associated smooth curve

in the figure is the case in which we have replacedR
pðy; z; r=lÞdz by the lognormal model of Kolmogorov:

pLðy; r=lÞ, that is,

pLðy; r=lÞ
¼ expf�½ln y � mðr=lÞ
2=½2sðr=lÞ2
g=½ð2pÞ1=2ysðr=lÞ


with

sðr=lÞ ¼ ½l lnðl=rÞ
1=2; mðr=lÞ ¼ �sðr=lÞ2=2: ðA:2Þ

Hence we can see that the lognormal approximation toR
pðy; z; r=lÞdz is almost equally good for the calculation

of P ðd=gsÞ. The previous paper [5] showed how well

pLðy; r=lÞ approximates
R
pðy; z; r=lÞdz itself for various

r=l. These approximations to the discrete function in y
space may be understood as a kind of coarse graining (in

y space) which is familiar in statistical mechanics. The

Fig. 2(a) is substantially supported by the experiment

[12], which gives the mean of d ffi 13g, as is described in

the text.

A scalar-gradient sheet is considered to have the

width of local Taylor-scale k0, from the DNS observa-

tion. Then, the PDF for a sheet to have width k0, when it

is normalized by k, is given in a similar way as
Fig. 2. The PDFs of thickness (normalized by gs) (a) and width

(normalized by k) (b) of a sheet; based on the step-function

approximation and lognormal approximation.
P ðk0=kÞ ¼ 2ðk0=kÞ�3y5=4


Z

pðy; z; r0=LÞdz
Z Z

y5=4pðy; z; r0=LÞdydz;
�

ðA:3Þ

only if the relation:

y ¼ ðk0=kÞ�2 ðA:4Þ

is taken into account. Fig. 2(b) shows the P ðk0=kÞ cal-

culated using the same step-function approximation toR
pðy; z; r0=LÞdz. The associated smooth curve is the re-

sult obtained by the same lognormal approximation toR
pðy; z; r0=LÞdz.
By the way, it may be noted that we can also find the

PDF of the strain a in a sheet, since a ¼ 2pj=d2 by

definition and we already know the PDF of d.
Appendix B. PDF of scalar gap across a sheet

From Eqs. (11) and (12) we may express the scalar

gap normalized by (j1=4v1=2
L =e1=4L ) as

S=ðj1=4v1=2
L =e1=4L Þ ¼ ep=4msðFz00z0zÞ1=2y�1=4; ðB:1Þ

where we have put z ¼ vr0=vL, z0 ¼ vk0=vr0 and z00 ¼
vk0 ð1=2Þðn�1Þ=3=vk0 . According to Postulate 3, n is given as

n ¼ log2ðk0=dÞ ¼ log2½ð151=4=msÞR1=2
k Pr3=4y�1=4
; ðB:2Þ

after taking into account Eq. (15) and k=g ¼ 15R1=2
k [13].

Since we know the PDF of y; z; z0; z00 by means of

Postulate 1, the PDF of S=ðj1=4v1=2
L =e1=4L Þ � R can be

formulated as

P ðRÞ ¼ 2R
Z Z Z

1=ða2z0zy�1=2Þ


Z

pðy 00;R2=ða2z0zy�1=2Þ; 1=2ðn�1Þ=3Þdy00


Z

pðy0; z0; 120=ðRky1=2ÞÞdy0dz0pðy; z; 1=8Þdy dz;

ðB:3Þ

where a ¼ ep=4msF 1=2. It is to be noted that y and z are
correlated with each other but z0 and z00 are independent
fragmentations in our multifractal model. Since the pa-

rameter r=l in pðy; z; r=lÞ must be less than 1 in order for

a fragmentation of the measure to occur, our formula-

tion requires that n > 1, i.e. R1=2
k Pr3=4 be larger than

2msy1=4=151=4, and that 120=ðRky1=2Þ < 1. When n6 1, no

fragmentation can occur, so it is suitable to simply setR
pðy00; z00Þdy00 ¼ dðz00 � 1). For the same reason, we putR
pðy0; z0Þdy0 ¼ dðz0 � 1Þ for 120=ðRky1=2ÞP 1.

P ðRÞ is a discrete function because pðy; z; r=lÞ in Eq.

(7) is a discrete function. Unfortunately there is no

simple-shape approximations to pðy; z; r=lÞ and evenR
pðy; z; r=lÞdy such that they could represent suitable
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measures on continuous sets in y  z and z space, re-

spectively. This is a situation in big contrast toR
pðy; z; r=lÞdz which has the step-function or lognormal

approximation described in the preceding section. As a

result, the probabilities at various discrete points of R
generally scatter in a very complicated way. Therefore it

is most suitable to represent P ðRÞ by a normalized his-

togram in order to grasp a global trend for the PDF of

R. This may be considered as another kind of coarse

graining (in R space).

We can see such a histogram in Fig. 3 for Pr ¼ 1 and

various values of Rk. The height of each column in the

histogram indicates the sum of the probabilities of all
Fig. 3. The PDF of scalar gap (normalized by j1=4v1=2
L =e1=4L )

across a sheet for Pr ¼ 1 and for Rk ¼ 150 (a), 300 (b), 1000 (c)

and 4000 (d).
the discrete points of R involved in the respective col-

umn with unity band width, so that the total area of the

histogram should be exactly unity, as easily understood

from Eqs. (7) and (B.3). As Rk gets large, the number of

discrete points of R increases in each column, but it is

not likely that a substantial change in the global PDF

pattern of R appears, at least, until Rk ¼ 4000. A re-

markable thing seen here is that the PDF is not of a

simple bell-type but has three or more lumps; the highest

peak among the lumps is located near R ¼ 9 and the

next one is near R ¼ 5 until Rk ¼ 1000. But at Rk ¼ 4000

the peak near R ¼ 9 gets lower while the lump near R ¼
5 has the highest peak.

For Pr larger than 1 and Rk ¼ 150, the number of

discrete points in the histogram increases with Pr and the

lumps of P ðRÞ considerably shift toward higher values of

R, as is seen in Fig. 4. In this case, the highest peak is

always in the middle lump. It is noted in Fig. 4(b) for

Pr ¼ 100, however, that a new lump grows with a high

peak near R ¼ 4.

For Pr smaller than 1 and Rk ¼ 1000, the above-de-

scribed tendency that the lumps of P ðRÞ shift toward

higher values of R with increasing Pr is invariant, as is

seen from Fig. 5. But the highest peak is always in the

rightest lump. The distribution pattern of lumps is ra-

ther similar to those in Fig. 3. It is noted in Fig. 5(c) for

Pr ¼ 0:1, however, that the third lump vanishes entirely.

For a small Pr;Rk must be large enough to insure the

condition R1=2
k Pr3=4 > 2ms=15

1=4; otherwise, gs would

absurdly surpass Taylor-scale k (from the viewpoint of

inertial-convective scale-range).
Fig. 4. The PDF of scalar gap (normalized by j1=4v1=2
L =e1=4L Þ

across a sheet for Rk ¼ 150 and for Pr ¼ 10 (a) and 100 (b).



Fig. 5. The PDFof scalar gap (normalized by j1=4v1=2
L =e1=4L ) across

a sheet for Rk ¼ 1000 and for Pr ¼ 0:5 (a), 0.2 (b) and 0.1 (c).
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All these features of P ðRÞ predicted by our treatment

look novel but a necessary result from the theory. How

close to reality they are must be eventually judged by

comparison with a DNS or experiment in future. This

will be a crucial test of the present theory on whether the

joint multifractal measure in it could represent the

qualitative essence of passive scalar turbulence.

All the calculations of the PDFs in Eqs. (A.1), (A.3)

and (B.3) were carried out with the help of ‘‘Mathe-

matica 3.0’’ by Wolfram.
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